Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 25, 2025
-
Abstract Contraction properties of transport maps between probability measures play an important role in the theory of functional inequalities. The actual construction of such maps, however, is a non-trivial task and, so far, relies mostly on the theory of optimal transport. In this work, we take advantage of the infinite-dimensional nature of the Gaussian measure and construct a new transport map, based on the Föllmer process, which pushes forward the Wiener measure onto probability measures on Euclidean spaces. Utilizing the tools of the Malliavin and stochastic calculus in Wiener space, we show that this Brownian transport map is a contraction in various settings where the analogous questions for optimal transport maps are open. The contraction properties of the Brownian transport map enable us to prove functional inequalities in Euclidean spaces, which are either completely new or improve on current results. Further and related applications of our contraction results are the existence of Stein kernels with desirable properties (which lead to new central limit theorems), as well as new insights into the Kannan–Lovász–Simonovits conjecture. We go beyond the Euclidean setting and address the problem of contractions on the Wiener space itself. We show that optimal transport maps and causal optimal transport maps (which are related to Brownian transport maps) between the Wiener measure and other target measures on Wiener space exhibit very different behaviors.more » « less
-
Kaiai, Yael Tauman (Ed.)Societal accumulation of knowledge is a complex process. The correctness of new units of knowledge depends not only on the correctness of new reasoning, but also on the correctness of old units that the new one builds on. The errors in such accumulation processes are often remedied by error correction and detection heuristics. Motivating examples include the scientific process based on scientific publications, and software development based on libraries of code. Natural processes that aim to keep errors under control, such as peer review in scientific publications, and testing and debugging in software development, would typically check existing pieces of knowledge - both for the reasoning that generated them and the previous facts they rely on. In this work, we present a simple process that models such accumulation of knowledge and study the persistence (or lack thereof) of errors. We consider a simple probabilistic model for the generation of new units of knowledge based on the preferential attachment growth model, which additionally allows for errors. Furthermore, the process includes checks aimed at catching these errors. We investigate when effects of errors persist forever in the system (with positive probability) and when they get rooted out completely by the checking process. The two basic parameters associated with the checking process are the probability of conducting a check and the depth of the check. We show that errors are rooted out if checks are sufficiently frequent and sufficiently deep. In contrast, shallow or infrequent checks are insufficient to root out errors.more » « less
An official website of the United States government

Full Text Available